
CPSC-313: Introduction to Computer Systems UNIX I/O

UNIX I/O

• Files and File Representation

• Basic operations: Reading / Writing

• Caching: File Open / Close

• Multiplexing: Select / Poll

• File Descriptors

• Reading: R&R, Ch 4

Note: Some material in this set of slides comes from Solomon&Russinovich,
“Inside Windows 2000,” Microsoft Programming Series.

What is a File?

• A file is a collection of data elements, grouped
together for purpose of access control, retrieval, and
modification

• Often, files are mapped onto physical storage devices,
usually nonvolatile.

• Some modern systems define a file simply as a
sequence, or stream of data units.
==> Files don’t need to be persistent. (We can call any
stream of data units a file!)

CPSC-313: Introduction to Computer Systems UNIX I/O

Files are not always “Files”: I/O Devices

CPU

modem network

mouse printer

keyboard mass storage

graphics

memory

File Operations: Read/Write: read

#include <unistd.h>

ssize_t read(int fildes, void & buf, size_t n_byte);

ECONNRESET: read attempted on a socket and connection was forcibly
closed by peer

EAGAIN: O_NONBLOCK is set for file descriptor and thread would be
delayed

EBADF: fildes is not a valid file descriptor open for reading
EINTR: read was terminated due to receipt of a signal and no data

was transferred
EIO: <paraphrased: process has problems reading from controlling

terminal>
ENOTCONN: read socket is not connected
EOVERFLOW: <for regular files> starting position exceeds offset maximum
ETIMEDOUT: read on socket, and transmission timeout occurred
EWOULDBLOCK: file descriptor is for socket marked O_NONBLOCK and no data

is waiting to be received.

CPSC-313: Introduction to Computer Systems UNIX I/O

read Example

#include <errno.h>

#include <unistd.h>

ssize_t rf_read(int fd, void * buf, size_t size) {

 size_t to_read;

 ssize_t retval;

 for (to_read = size, ret_val = 0;

 to_read > 0;

 buf += ret_val, to_read -= ret_val) {

 ret_val = read(fd, buf, to_read;

 if ((ret_val < 0) && (errno != EINTR)) return -1;

 if (ret_val < 0) ret_val = 0;

 to_read -= ret_val;

 }

 return size;

}

rf_read similar to read except that it restarts if
interrupted and reads the full amount

Framing

• Character count

• Starting and ending flags, with bit
stuffing

• Physical layer coding violations

• Starting and ending chars, with
character stuffing

5 1 2 3 4 8 1 2 3 4 5 6 7 12

character count

DLE STX a b DLE DLE c DLE ETX

stuffed DLE

framing pattern: 01111110

011011111011111011111010010

stuffed bits

binary

Manchester

lack of transition

CPSC-313: Introduction to Computer Systems UNIX I/O

File Operations: Read/Write

#include <unistd.h>

ssize_t write(int fildes, const void & buf, size_t n_byte);

ECONNRESET: write attempted on a socket and connection was forcibly
closed by peer

EAGAIN: O_NONBLOCK is set for file descriptor and thread would be
delayed

EBADF: fildes is not a valid file descriptor open for writing
EINTR: write was terminated due to receipt of a signal and no data

was transferred
EIO: <paraphrased: process has problems writing to controlling

terminal>
ENOSPC: no free space remaining on device containing the file
EPIPE: attempt to write to a closed pipe or closed connection
EWOULDBLOCK: file descriptor is for socket marked O_NONBLOCK and write

would block

• Open file system call: cache information about file in kernel
memory:

– location of file on disk

– file pointer for read/write

– blocking information

– etc.

• Single-user system:

• Multi-user system:

Bookkeeping (for details on file descriptors, see later)

process open-file table

file1

file2 file pos

file pos

system open-file table

open cnt

open cnt file pos ...

...file pos

open-file table

file1

file2 file pos file location

file locationfile pos

CPSC-313: Introduction to Computer Systems UNIX I/O

Example: W2k File Objects
Filename Identifies the physical file that the file

object refers to

Current byte offset Identifies the current location of the file
(valid only for synchronous I/O)

Share modes Indicate whether other callers can access
the file while the current caller is using it.

Open mode flags Indicate whether I/O will be synchronous or
asynchronous, cached or non-cached,
sequential or random, etc.

Pointer to device object

Pointer to volume
parameter block

Indicates the volume, or partition, that the
file resides on.

Pointer to section object
pointers

Indicates a root structure that describes a
mapped file.

Pointer to private cache
map

Identifies which part of the file are cached
by the cache manager

Opening a File Object (W2k)

Figure from Solomon&Russinovich, “Inside Windows 2000,” Microsoft Programming Series

CPSC-313: Introduction to Computer Systems UNIX I/O

Errors:
EACCESS: <various forms of access denied>
EEXIST O_CREAT and O_EXCL set, and file exists already.
EINTR: signal caught during open
EISDIR: file is a directory and O_WRONLY or O_RDWR in flags
ELOOP: there is a loop in the path
EMFILE: to many files open in calling process
ENAMETOOLONG: …

ENFILE: to many files open in system
…

Opening/Closing Files

#include <fcntl.h>

#include <sys/stat.h>

int open(const char * path, int oflag, …);

/* returns open file descriptor */

Flags:
O_RDONLY, O_WRONLY, O_RDWR

O_APPEND, O_CREAT, O_EXCL, O_NOCCTY

O_NONBLOCK, O_TRUNC

Opening/Closing Files

#include <unistd.h>

int close(int fildes);

Errors:
EBADF: fildes is not valid file descriptor
EINTR: signal caught during close

Example:

int r_close(int fd) {

 int retval;

 while (retval = close(fd), ((retval == -1) && (errno == EINTR)));

 return retval;

}

CPSC-313: Introduction to Computer Systems UNIX I/O

Multiplexing: select()

#include <sys/select.h>

int select(int nfds,

 fd_set * readfds,

 fd_set * writefds,

 fd_set * errorfds,

 struct timeval timeout);

 /* timeout is relative */

void FD_CLR (int fd, fd_set * fdset);

int FD_ISSET(int fd, fd_set * fdset);

void FD_SET (int fd, fd_set * fdset);

void FD_ZERO (fd_set * fdset);
Errors:
EBADF: fildes is not valid for one

or more file descriptors
EINVAL: <some error in parameters>
EINTR: signal caught during select

before timeout or selected event

select() Example: Reading from multiple fd’s

while (!done) {

 numready = select(maxfd, &readset, NULL, NULL, NULL);

 if ((numready == -1) && (errno == EINTR))

 /* interrupted by signal; continue monitoring */

 continue;

 else if (numready == -1)

 /* a real error happened; abort monitoring */

 break;

 for (int i = 0; i < numfds) {

 if (FD_ISSET(fd[i], &readset) { /* this descriptor is ready*/

 bytesread = read(fd[i], buf, BUFSIZE);

 done = TRUE;

 }

}

FD_ZERO(&readset);

maxfd = 0;

for (int i = 0; i < numfds; i++) {

 /* we skip all the necessary error checking */

 FD_SET(fd[i], &readset);

 maxfd = MAX(fd[i], maxfd);

}

CPSC-313: Introduction to Computer Systems UNIX I/O

select() Example: Timed Waiting on I/O

int waitfdtimed(int fd, struct timeval end) {

 fd_set readset;

 int retval;

 struct timeval timeout;

 FD_ZERO(&readset);

 FDSET(fd, &readset);

 if (abs2reltime(end, &timeout) == -1) return -1;

 while (((retval = select(fd+1,&readset,NULL,NULL,&timeout)) == -1)

 && (errno == EINTR)) {

 if (abs2reltime(end, &timeout) == -1) return -1;

 FD_ZERO(&readset);

 FDSET(fd, &readset);

 }

 if (retval == 0) {errno = ETIME; return -1;}

 if (retval == -1) {return -1;}

 return 0;

}

File Representation to User

3

file descriptor
table

UNIX File Descriptors:

int myfd;

myfd = open(“myfile.txt”, O_RDONLY));

myfd

system file
 table

in-memory
inode table

[0]

[1]

[2]

[3]

[4]

user space kernel space

file descriptor
table

myfp

[0]

[1]

[2]

[3]

[4]

user space kernel space

ISO C File Pointers:

FILE *myfp;

myfp = fopen(“myfile.txt”, “w”);

file structure

3

CPSC-313: Introduction to Computer Systems UNIX I/O

File Descriptors and fork()

• With fork(), child inherits
content of parent’s address
space, including most of
parent’s state:

– scheduling parameters

– file descriptor table

– signal state

– environment

– etc.

parent’s file desc table

child’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)

File Descriptors and fork() (II)

parent’s file desc table

parent’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)

int main(void) {

 char c = ‘!’;

 int myfd;

 myfd = open(‘myf.txt’, O_RDONLY);

 fork();

 read(myfd, &c, 1);

 printf(‘Process %ld got %c\n’,

 (long)getpid(), c);

 return 0;

}

CPSC-313: Introduction to Computer Systems UNIX I/O

File Descriptors and fork() (III)

parent’s file desc table

parent’s file desc table

[0]

[1]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

A(SFT)

B(SFT)

C(SFT)

D(SFT)

A(SFT)

B(SFT)

C(SFT)

E(SFT)

A

B

C

D (“myf.txt”)

system file table (SFT)
int main(void) {

 char c = ‘!’;

 int myfd;

 fork();

 myfd = open(‘myf.txt’, O_RDONLY);

 read(myfd, &c, 1);

 printf(‘Process %ld got %c\n’,

 (long)getpid(), c);

 return 0;

}

E (“myf.txt”)

Duplicating File Descriptors: dup2()

• Want to redirect I/O from well-known file descriptor
to descriptor associated with some other file?

– e.g. stdout to file?

#include <unistd.h>

int dup2(int fildes, int fildes2);

Example: redirect standard output to file.

int main(void) {

 int fd = open(‘my.file’, <some_flags>, <some_mode>);

 dup2(fd, STDOUT_FILENO);

 close(fd);

 write(STDOUT_FILENO, ‘OK’, 2);

}

Errors:

EBADF: fildes or fildes2 is not valid
EINTR: dup2 interrupted by signal

